Hyperspectral Vegetation Indices for Estimation of Leaf Area Index

نویسندگان

  • R. Darvishzadeh
  • C. Atzberger
  • A. K. Skidmore
چکیده

Spectral vegetation indices are frequently used to estimate vegetation biophysical/biochemical characteristics. In general they have been proposed to reduce spectral effects caused by external factors such as the atmosphere and the soil background. This study evaluated narrow band vegetation indices for estimation of vegetation leaf area index. The study takes advantage of using a dataset collected during a laboratory experiment. The spectral measurements have been carried out using a GER spectroradiometer. Leaf area indices were destructively acquired at the same time. Vegetation types sampled included four different types and sizes of leaves. For predicting leaf area index, five widely used vegetation indices were investigated. Narrow band vegetation indices involving all possible two band combinations of RVI, NDVI, PVI, TSAVI, and SAVI2 were computed. Cross-validation procedures were used to assess the predictive power of the regression model. We observed a significant relationship between the narrow band SAVI2 and the leaf area index (R =0.78, RMSE=0.57). All other narrow band indices respectively: RVI, NDVI, PVI and TSAVI had relatively lower R values (0.65≤ R ≤0.75) and higher RMSE values compared to SAVI2. Our results showed that bands from the SWIR region contain relevant information regarding to canopy LAI and are important for LAI estimation. The study demonstrates that hyperspectral data can be used to quantify leaf area index with a high accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating Hyperspectral Vegetation Indices for Leaf Area Index Estimation of Oryza sativa L. at Diverse Phenological Stages

Hyperspectral reflectance derived vegetation indices (VIs) are used for non-destructive leaf area index (LAI) monitoring for precise and efficient N nutrition management. This study tested the hypothesis that there is potential for using various hyperspectral VIs for estimating LAI at different growth stages of rice under varying N rates. Hyperspectral reflectance and crop canopy LAI measuremen...

متن کامل

Estimating Yellow Starthistle (Centaurea solstitialis) Leaf Area Index and Aboveground Biomass with the Use of Hyperspectral Data

Hyperspectral remote-sensed data were obtained via a Compact Airborne Spectrographic Imager-II (CASI-II) and used to estimate leaf-area index (LAI) and aboveground biomass of a highly invasive weed species, yellow starthistle (YST). In parallel, 34 ground-based field plots were used to measure aboveground biomass and LAI to develop and validate hyperspectral-based models for estimating these me...

متن کامل

Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data

Field spectrometer data and leaf area index (LAI) measurements were collected on the same day as the Earth Observing 1 satellite overpass for a study site in the Patagonia region of Argentina. We first simulated the total at-sensor radiances using MODTRAN 4 for atmospheric correction. Then ground spectroradiometric measurements were used to improve the retrieved reflectance for each pixel on th...

متن کامل

Vegetation Indices for Mapping Canopy Foliar Nitrogen in a Mixed Temperate Forest

Hyperspectral remote sensing serves as an effective tool for estimating foliar nitrogen using a variety of techniques. Vegetation indices (VIs) are a simple means of retrieving foliar nitrogen. Despite their popularity, few studies have been conducted to examine the utility of VIs for mapping canopy foliar nitrogen in a mixed forest context. In this study, we assessed the performance of 32 vege...

متن کامل

Beyond greenness: Detecting temporal changes in photosynthetic capacity with hyperspectral reflectance data

Earth's future carbon balance and regional carbon exchange dynamics are inextricably linked to plant photosynthesis. Spectral vegetation indices are widely used as proxies for vegetation greenness and to estimate state variables such as vegetation cover and leaf area index. However, the capacity of green leaves to take up carbon can change throughout the season. We quantify photosynthetic capac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006